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Abstract

We perform an analytic calculation of the one-loop amplitude for the W -boson mediated process

0 → dūQQ̄ℓ̄ℓ retaining the mass for the quark Q. The momentum of each of the massive quarks

is expressed as the sum of two massless momenta and the corresponding heavy quark spinor is

expressed as a sum of two massless spinors. Using a special choice for the heavy quark spinors

we obtain analytic expressions for the one-loop amplitudes which are amenable to fast numerical

evaluation. The full next-to-leading order (NLO) calculation of hadron + hadron → W (→ eν)bb̄

with massive b-quarks is included in the program MCFM. A comparison is performed with previous

published work.
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FIG. 1: Example of a partonic process contributing to Wbb̄ production

I. INTRODUCTION

One of the most interesting channels currently under study at the Tevatron and the LHC

is the final state containing a W -boson and jets, where some or all of the produced jets are

tagged as containing a bottom quark. Several interesting partonic processes contribute to

this final state, for example,

• W +H (→ bb̄)

• W + Z (→ bb̄)

• b̄+ t (→ W+ + b)

• t̄+ t (→ W+ + b)

A background to these processes involving heavy bosons and fermions, is the QCD and

electroweak process occurring in the collision of hadrons H1 and H2,

H1 +H2 → W + b+ b̄+X . (1)

An example of a partonic subprocess contributing to this process is shown in Fig. 1. Next-to-

leading corrections to this process were first considered in [1], working in the approximation

in which the b-quark is considered massless. Since in many analyses the b-quark is required

to have a minimum pT , typically 15 GeV or more, in order to be efficiently tagged, the

neglect of the mass of the bottom quark is expected to be a good approximation.

After these initial studies, this same process was considered in refs. [2–5], without making

the approximationmb = 0. These studies, performed without the inclusion of decay products
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of theW boson effectively confirmed that themb = 0 approximation is good to a few percent,

with the difference parametrically suppressed as m2
b/p

2
T . Thus retaining the mass of the b-

quark extends the prediction to lower values of pT . In addition, it allows us treat the case

where the two b-quarks end up in the same jet and the case when one b-quark is either too

soft or too forward to be tagged. These kinematic configurations can be important for the

Higgs search at the Tevatron and the LHC [6, 7].

The purpose of this paper is to repeat the calculation of ref. [2], i.e. including the effects

of a finite b-quark mass, but also including the spin correlations present in the W -boson

decay. The calculation is performed using the spinor helicity formalism, with the calculated

amplitudes represented as analytic formulae. Although the formulae are not compact enough

to be presented in their entirety here, they do lead to an efficient and numerically stable

code.

Following a four-dimensional unitarity based approach [8, 9], we will construct the loga-

rithmic parts of the virtual amplitude using multiple cuts. Developments to this technique

utilizing complex momenta [10–13] allow us to compute analytic expressions for the coeffi-

cients of the known scalar integrals.

The bulk of our paper is dedicated to a description of the calculation of the one-loop

corrections to the process 0 → dūQQ̄ℓ̄ℓ retaining the mass for the quark Q. The detailed

plan of this paper is as follows. In section II we present our method for dealing with

massive spinors using spinor helicity techniques. Section III gives a precise definition of

the amplitude that we wish to calculate, including the decomposition into colour stripped

amplitudes and the further decomposition into one-loop primitive amplitudes. Sections IV,

V and VI illustrate our calculation of the leading colour primitive amplitude, Alc
6 , of the

sub-leading colour primitive, Asl
6 , and of the primitive amplitudes containing a closed loop

of fermions, Alf
6 and Ahf

6 . Section VII presents the renormalization counterterms. After

describing the implementation of the calculation into MCFM in section VIII and comparing

with earlier work, we draw some conclusions in section IX.

II. TREATMENT OF MASSIVE SPINORS

A method for dealing with a massive particle in the context of the spinor helicity method

has been given by Kleiss and Stirling [14]. A massive momentum can always be represented
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as a sum of two massless momenta. Thus the spinor solution for a massive particle can be

expressed in terms of massless spinors by decomposing the physical momentum in terms

of the two massless momenta. If we are ultimately going to sum over the spin degrees of

freedom, the only constraint that the massive spinors must satisfy is that they should give

the standard result for the spin sum after averaging over polarizations, namely,

∑

s=±
us(p,m)ūs(p,m) = 6p+m ,

∑

s=±
vs(p,m)v̄s(p,m) = 6p−m . (2)

We can decompose a massive vector into two massless vectors by introducing an arbitrary

massless reference vector, η,

p = p♭ +
m2

p

〈η|p|η]η. (3)

In this equation p♭ is a massless vector. The details of our spinor product notation are given

in Appendix A. The definitions of massive external spinor wave functions are,

ū±(p,m; p♭, η) = 1

〈η∓| p♭±〉〈η ∓ |(6p+m) ,

v±(p,m; p♭, η) = 1

〈p♭∓| η±〉(6p−m)|η±〉 , (4)

where the subscripts ± label the spin degrees of freedom. In the massless limit these labels

correspond to the helicity quantum numbers, but in the massive case they have no such

interpretation. Treating the spinors as independent functions of p♭ and η i.e. ignoring the

constraint in Eq. (3) we can show using simple manipulations that,
[

p♭ η
]

m
ū−(p,m; η, p♭) = ū+(p,m; p♭, η) ,

〈

p♭ η
〉

m
v+(p,m; η, p♭) = v−(p,m; p♭, η) . (5)

This has the attractive feature that amplitudes with different spin labels can be obtained

from one another by exchanging p♭ and η. This method has been used in the calculation of

one-loop corrections to top production [15, 16].

A. Special choice for massive spinors

In this paper, however, we adopt a different approach. By making a specific choice for

the vector η in terms of other vectors in the problem we can simplify the calculation of
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individual amplitudes. In addition, we shall find that for our particular choice of the vector

η, one-loop results for the colour suppressed primitive amplitude can be obtained directly

from the corresponding massless amplitude.

The implementation of the Kleiss-Stirling scheme appropriate for the case where we have

pairs of massive particles is due to Rodrigo [17]. The two massive momenta p2 and p3 with

equal masses, corresponding to the momenta of the antiquark and quark respectively, are

written in terms of lightlike momenta k2 and k3,

pµ2 =
1 + β

2
kµ
2 +

1− β

2
kµ
3 ,

pµ3 =
1 + β

2
kµ
3 +

1− β

2
kµ
2 , (6)

where,

β =
√

1− 4m2/s23 , β± =
1

2
(1± β) , (7)

and s23 = (p2 + p3)
2 ≡ 2k2 · k3. The decomposition of Eq. (6) has the advantage that

momentum conservation is preserved, p2+ p3 = k2+k3. The inverse transformation is given

by,

kµ
2 =

1 + β

2β
pµ2 −

1− β

2β
pµ3 ,

kµ
3 =

1 + β

2β
pµ3 −

1− β

2β
pµ2 . (8)

In the rest of this paper we shall denote massive vectors by pi, (p
2
i 6= 0) and massless vectors

by ki, (k
2
i = 0). For the massless vectors ki we shall further define massless spinors,

u−(ki) = |i−〉 = |i] , u+(ki) = |i+〉 = |i〉 ,

ū−(ki) = 〈i− | = 〈i| , ū+(ki) = [i+ | = [i| . (9)

In terms of the two massless momenta in Eq. (8) the explicit results for the massive solutions

of the Dirac equation are,

ū±(p3, m) =
β
−1/2
+

〈2∓|3±〉〈2
∓| (p/3 +m) , v±(p2, m) =

β
−1/2
+

〈2∓|3±〉(p/2 −m) |3±〉 . (10)

This corresponds to choosing,

η2 = k3, p♭2 = β+k2 ,

η3 = k2, p♭3 = β+k3 , (11)
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in Eqs. (3,4).

With this choice, the results for the massive quark current with spin labels {+,−} and

{−,+} have the same form as they would have in the massless limit (i.e. in the limit in

which pi → ki for i = 2, 3),

Sµ(3±
Q
, 2∓

Q̄
) = ū±(p3, m)γµv∓(p2, m) = ū±(k3)γ

µv∓(k2) ≡ 〈3±|γµ|2±〉 . (12)

The results for spin labels {−,−} and {+,+} on the heavy quark current are,

Sµ(3−
Q
, 2−

Q̄
) = ū−(p3, m)γµv−(p2, m) = 2N−− (k2 − k3)

µ ,

Sµ(3+
Q
, 2+

Q̄
) = ū+(p3, m)γµv+(p2, m) = 2N++ (k2 − k3)

µ , (13)

where the overall normalization is given by,

N−− =
m

[2 3]
, N++ =

m

〈2 3〉 . (14)

Contracting these equations with a Dirac matrix we obtain,

Sµ(3+
Q
, 2−

Q̄
)⊗ {γµ} = 2 {|2〉[3|+ |3]〈2|} , (15)

Sµ(3−
Q
, 2+

Q̄
)⊗ {γµ} = 2 {|3〉[2|+ |2]〈3|} , (16)

Sµ(3−
Q
, 2−

Q̄
)⊗ {γµ} = 2N−− {|2〉[2| − |3〉[3|+ |2]〈2| − |3]〈3|} , (17)

Sµ(3+
Q
, 2+

Q̄
)⊗ {γµ} = 2N++ {|2〉[2| − |3〉[3|+ |2]〈2| − |3]〈3|} . (18)

As an example of the use of these spinors, in Appendix B 1 we outline the calculation of the

tree-level amplitudes for gQ̄Qg scattering, which will appear later as an ingredient in the

calculation of our one-loop amplitudes.

III. SETUP

We shall consider the process,

0 → q(k1) + Q̄(p2) +Q(p3) + q̄(k4) + ℓ̄(k5) + ℓ(k6) , (19)

both at tree level and including the one-loop QCD corrections. The process is mediated

by the exchange of a W -boson which decays into an antilepton-lepton pair with momenta

labelled by k5 and k6, as shown in Fig. 2. The V-A structure of the charged weak interaction
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FIG. 2: Feynman graphs that enter the calculation of the lowest order amplitude. The massive

quarks are represented by the heavy (red) line, the wavy line denotes a W boson and as usual the

helical line denotes a gluon.

ensures that the lepton and massless-quark lines will have fixed helicity. Thus the outgoing

lepton (6) will be always left-handed and the outgoing antilepton (5) always right-handed.

With this understanding we can often drop the lepton labels from the specification of the

amplitude.

A. Colour decomposition

As noted above we shall suppress the labels for the outgoing leptons 5 and 6 which play

no role in the colour decomposition. The colour decomposition for the tree graphs is,

Atree
6 (1q, 2Q̄, 3Q, 4q̄) = g2Wg2 PW (s56) A

tree
6 (1q, 2Q̄, 3Q, 4q̄)

(

δ
j̄2
j1

δ
j̄4
j3

− 1

Nc

δ
j̄4
j1

δ
j̄2
j3

)

. (20)

In Eq. (20) we have introduced the strong coupling constant, g, and the weak coupling, gW ,

defined through,

αS =
g2

4π
,

GF√
2
=

g2W
8M2

W

. (21)

The Breit-Wigner factor PW (s) is given by,

PW (s) =
s

s−M2
W + iΓW MW

. (22)

The indices j1, j3, ( j̄2, j̄4) denote the colour labels of the corresponding quark (antiquark)

lines.

At one loop the colour decomposition is given by,

A1−loop
6 (1q, 2Q̄, 3Q, 4q̄) = g2Wg4cΓ PW (s56)

×
[

Nc δ
j̄2
j1

δ
j̄4
j3

A6;1(1q, 2Q̄, 3Q, 4q̄) + δ
j̄4
j1

δ
j̄2
j3

A6;2(1q, 2Q̄, 3Q, 4q̄)
]

, (23)
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where the overall factor cΓ is,

cΓ =
1

(4π)2−ǫ

Γ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
. (24)

The interference of the one-loop amplitude with the lowest order, summed over initial and

final colours, is given by,

∑

colours

[A∗
6A6]NLO = 2g4W g6cΓ (N

2
c − 1)Nc |PW (s56)|2

× Re
{

[Atree
6 (1q, 2, 3, 4q̄)]

∗A6;1(1q, 2, 3, 4q̄)
}

. (25)

Therefore A6;2 plays no role in the calculation of NLO corrections.

B. Tree level amplitudes

The tree level amplitudes can be calculated using the diagrams of Fig. 2. The {−+}
amplitude, expressed in terms of the momenta ki, is identical to the massless result as a

consequence of Eq. (12),

−iAtree
6 (1−q , 2

+
Q̄
, 3−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) =

[〈1 3〉 [4 5] 〈6|(1 + 3)|2]
s23s56s123

− [4 2] 〈1 6〉 [5|(2 + 4)|3〉
s23s56s234

]

≡
[{

〈1 3〉 [4 5] 〈6|(1 + 3)|2]
s23s56s123

}

−
{

flip

}]

, (26)

where we have introduced the symmetry,

flip : (1 ↔ 4), (2 ↔ 3), (5 ↔ 6), [ ] ↔ 〈 〉 . (27)

The {−−} amplitude is given by,

− iAtree
6 (1−q , 2

−
Q̄
, 3−

Q
, 4+q̄ , 5

+
ℓ
, 6−ℓ ) = N−−

×
[{

[4 5]

(〈6|(1 + 2)|3] 〈3 1〉 − 〈6|(1 + 3)|2] 〈2 1〉
s23s56s123

)

}

+

{

flip

}]

, (28)

with the mass-dependent normalization factor given in Eq. (14). The amplitudes for

Atree
6 (1−, 2−, 3+, 4+, 6−, 5+) and Atree

6 (1−, 2+, 3+, 4+, 6−, 5+) can be easily obtained by ref-

erence to Eqs. (12,13),

Atree
6 (1−q , 2

−
Q̄
, 3+

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) = Atree

6 (1−q , 3
+
Q̄
, 2−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) , (29)

Atree
6 (1−q , 2

+
Q̄
, 3+

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) = −flip

[

Atree
6 (1−q , 2

−
Q̄
, 3−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ )

]

. (30)
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FIG. 3: Parent diagrams for the leading colour primitive Alc
6 (1, 2, 3, 4) and crossed box primitive

Acb
6 (1, 2, 3, 4).

C. Decomposition of one-loop amplitudes into primitive amplitudes

Following Ref. [18] we can decompose the full one-loop amplitude into gauge invariant

primitive amplitudes,

A6;1(1q, 2Q̄, 3Q, 4q̄) = Alc
6 (1, 2, 3, 4)−

2

N2
(Acb

6 (1, 2, 3, 4) + Alc
6 (1, 2, 3, 4))

− 1

N2
Asl

6 (1, 2, 3, 4)−
nlf

N
Alf

6 (1, 2, 3, 4)−
nhf

N
Ahf

6 (1, 2, 3, 4) ,

A6;2(1q, 2Q̄, 3Q, 4q̄) = Acb
6 (1, 2, 3, 4) +

1

N2
(Alc

6 (1, 2, 3, 4) + Acb
6 (1, 2, 3, 4))

+
1

N2
Asl

6 (1, 2, 3, 4) +
nlf

N
Alf

6 (1, 2, 3, 4) +
nhf

N
Ahf

6 (1, 2, 3, 4) . (31)

Alc
6 is the primitive amplitude containing the leading colour box and Acb

6 is the primitive

amplitude containing the crossed box. The parent diagrams are shown in Fig. 3. These two

primitive amplitudes are related by,

Acb
6 (1h1

q , 2h2

Q̄
, 3h3

Q
, 4h4

q̄ ) = −Alc
6 (1

h1

q , 3h3

Q̄
, 2h2

Q
, 4h4

q̄ ) . (32)

Asl
6 is the primitive amplitude containing the subleading colour boxes, see Fig. 4, and the

primitive amplitude for the fermion-loop diagrams (light and heavy), Alf
6 , A

hf
6 is shown in

Fig. 5. We note that, just as at tree level, parity ensures that we need only compute a

reduced set of amplitudes. For Alc
6 at one loop it is sufficient to calculate three of the four

possible spin label combinations since (c.f. Eq. 30),

Alc
6 (1

−
q , 2

+
Q̄
, 3+

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) = −flip

[

Alc
6 (1

−
q , 2

−
Q̄
, 3−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ )

]

. (33)
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FIG. 4: Parent diagrams for the subleading colour primitive amplitude, Asl
6 (1, 2, 3, 4).

FIG. 5: Diagrams for the fermion loop primitives Alf
6 (1, 2, 3, 4) and Ahf

6 (1, 2, 3, 4).

D. Structure of the calculation

In the presence of propagators with vanishing masses on internal lines the one-loop am-

plitude contains infrared and collinear divergences. In addition, the amplitude contains

ultraviolet divergences. We regulate all of these divergences using dimensional regulariza-

tion, continuing the loop integration to D = 4−2ǫ dimensions. The divergences then appear

as poles in ǫ. For the primitive amplitudes the divergence structure is quite simple and we

can separate the amplitude as follows,

Aj
6 =

[

Atree
6 V j + i F j

]

, (34)

where V j contains all the divergent pieces. In this equation Aj
6 is any of the primitive

amplitudes and the index j runs over {lc, cb, sl, lf, hf}. As we shall see later the simplicity

10



FIG. 6: Schematic diagram illustrating the decomposition in scalar integrals.

of the pole structure gives useful constraints on the different terms contributing to the

amplitude.

The calculation proceeds by noting that the primitive amplitudes can be expressed as a

sum of scalar box, triangle, bubble and tadpole integrals and a rational part,

−iAj
6(1

−, 2h2, 3h3, 4+, 5+, 6−) =
∑

i1i2i3

di1|i2|i3(h3, h2) D0(pi1, pi2 , pi3)

+
∑

i1i2

ci1|i2(h3, h2) C0(pi1 , pi2) +
∑

i1

bi1(h3, h2) B0(pi1) + a(h3, h2) A0

+ Rj(1−, 2h2, 3h3, 4+, 5+, 6−) , (35)

where the label j runs over the values {lc, cb, sl, lf, hf}. In this equation, illustrated in

Fig. 6, the indices i1, i2, i3 run over all partitions of the cyclically ordered momenta. The

coefficients d, c, b, a of the scalar integrals in Eq. (35) also depend on the primitive amplitude

index j. In the following we shall suppress this dependence, but the primitive amplitude

to which we are referring will be clear from the context. The functions A0, B0, C0, D0 are

the scalar integrals defined in Appendix C. The mass labels have been suppressed in the

scalar integrals in Eq. (35) because they are determined automatically by the propagators

connecting the two external massive quarks. Values for these scalar integrals are obtained

using the QCDLoop program [19]. By using four-dimensional unitarity methods [10–13, 20],

we obtain the coefficients, a, b, c, d in the four-dimensional helicity (FDH) scheme [21]. The

rational terms require information from beyond four dimensions.
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Scalar integral Coefficient Scalar integral Coefficient

1. D0(k1, p2, p3; 0, 0,m, 0) d1|2|3 4. D0(p2, p3, k4; 0,m, 0, 0) d2|3|4

2. D0(k1, p2, p34; 0, 0,m, 0) d1|2|34 5. D0(p12, p3, k4; 0,m, 0, 0) d12|3|4

3. D0(k1, p23, k4; 0, 0, 0, 0) d1|23|4

TABLE I: Scalar box integrals appearing in the leading colour amplitude Alc
6 1, 2, 3, 4) and the

notation used in the text to denote their coefficients.

IV. THE RESULTS FOR PRIMITIVE AMPLITUDE Alc
6

A. Divergent parts

For the leading colour primitive amplitude the divergent term which enters in Eq. (34) is

given by [22],

V lc = − 1

ǫ2

[

( µ2

−2k4.p3

)ǫ

+
( µ2

−2k1.p2

)ǫ

−
( µ2

m2

)ǫ
]

+
8

3

1

ǫ
. (36)

B. Calculation of the box coefficients

The five scalar box integrals that enter the leading colour amplitude are enumerated in

Table I. Of these, we directly calculate the coefficients of boxes 1–3 and obtain the remaining

two by symmetry:

d2|3|4(h3, h2) = −flip
[

d1|2|3(−h2,−h3)
]

,

d12|3|4(h3, h2) = −flip
[

d1|2|34(−h2,−h3)
]

, (37)

where h3 and h2 represent the spin labels of the quark and antiquark respectively and the

operation flip is defined in Eq. (27). When using the Rodrigo choice to decompose p2 and

p3, box 3 only gives a non-zero contribution for the spin-labels {−,−} and {+,+}.
The coefficients are computed using quadruple cuts with complex momenta [10]. For

boxes 1 and 2 the presence of a massive propagator leads to a more complicated parametriza-

tion of the loop momentum than in the purely massless case. The particular parameteriza-

tions that we have used are spelled out below.

12



FIG. 7: Diagram for the calculation of the coefficient of the scalar integral D0(k1, p2, p3; 0, 0,m, 0).

The massive quark is represented by the heavy (red) line and unitarity cuts are represented by a

dashed line.

1. Calculation of d1|2|3

The cuts used to isolate this coefficient are depicted in Fig. 7, where we remind the reader

that we work in the case that k2
1 = k2

4 = 0 and p22 = p33 = m2. The loop momentum is subject

to the following constraints,

l2 = 0, (l − k1)
2 = 0, (l − k1 − p2)

2 = m2, (l − k1 − p2 − p3)
2 = 0, (38)

Denoting l1 = l − k1 we have l1 · k1 = 0 so we must have either |l1〉 ∼ |1〉 or |l1] ∼ |1],
depending on the helicity of the internal gluons, in such a way that the 3-point qq̄g vertex

is non-vanishing.

In the case [l1| ∼ [1| we can write

lµ1 = lµ − kµ
1 =

s23
2

[1|γµ62|1]
[1|(62+ 63)62|1] ≡

s23
2

[1|γµ62|1]
[1|6362|1] ,

lµ123 = lµ1 − pµ2 − pµ3 = −1

2

[1|(62+ 63)γµ(62+ 63)62|1]
[1|6362|1] , (39)

where the boldface momenta denote massive vectors. By inspection, it is clear that this

parametrization of the loop momentum lµ satisfies the constraints in Eq. (38). Correspond-

ingly in the case 〈l1| ∼ 〈1| we can write

lµ1 = lµ − kµ
1 =

s23
2

〈1|62γµ|1〉
〈1|62(62+ 63)|1〉 ≡ s23

2

〈1|62γµ|1〉
〈1|6263|1〉 ,

lµ123 = lµ1 − pµ2 − pµ3 = −1

2

〈1|62(62+ 63)γµ(62+ 63)|1〉
〈1|6263|1〉 . (40)
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Note that the denominator in Eq. (40) simplifies when expressed in terms of massless mo-

menta,

〈1|6263|1〉 = β 〈1 2〉 [2 3] 〈3 1〉 , (41)

As an example, we will calculate the coefficient of this box integral for the spin label

choice {−,+}. The box coefficient is given by the formula,

d1|2|3(−,+) ≡ 1

2

∑

ha,hb

d
[ha,hb]
1|2|3 (−,+)

=
1

2

∑

ha,hb

A3(1
−
q ,−l+q̄ , l

ha

1 )× A5(l
−
q , 4

+
q̄ ,−lhb

123, 5
+
l̄
, 6−

l
)

×A4(−l−ha

1 , 2+
Q̄
, 3−

Q
, l−hb

123 )× (−i)
[

(l − k1 − p2)
2 −m2

]

, (42)

with the loop momenta fixed according to the constraints above, i.e. lµ is given by either

Eq. (39) or (40) above. In this formula we have for brevity suppressed the gluon particle

labels. Note that we have not explicitly cut the heavy quark propagator but, equivalently,

have simply written the full gQ̄Qg amplitude and multiplied by the cut propagator. Since

the gQ̄Qg amplitudes with the same helicity gluons vanish (c.f. Eq. (B13)), the coefficient

receives only two contributions.

Let us first inspect the assignment ha = −hb = +1. We note that it is simplest to

manipulate the gQ̄Qg amplitude, (Eq. (B13) first line), using the Schouten identity, Eq. (A6),

into an alternative form in order to take full advantage of the vanishing of the cut propagator,

−iA4(−l−1 , 2
+
Q̄
, 3−

Q
, l+123)

[

(l1 − p2)
2 −m2

]

=
[2 l123]

2 〈l1|62|l123]
[l1 l123] [2 3]

= − [2 l123]
2 ([l1 l123] 〈l1|62|3]− 〈l1|62|l1] [3 l123])

[l1 3] [l1 l123] [2 3]

= − [2 l123]
2

[l1 3] [2 3]

(

〈l1|62|3]−
[3 l123] 〈l1|62|l1]

[l1 l123]

)

.(43)

On shell, (l1 − p2)
2 −m2 ≡ 〈l1|62|l1] = 0 and we can simply discard the second term in this

equation. Using results for the other amplitudes presented in Appendix B we find that,

d
[+,−]
1|2|3 (−,+) =

[l l1]
2

[l 1]
× [4 5]2

[4 l123] [l l123] [6 5]
× β+ [2 l123]

2 〈2 l1〉
[l1 3]

, (44)

where we have simplified the gQ̄Qg amplitude further using the decomposition of p2 in

terms of k2 and k3. Since the propagator l does not have a simple decomposition in terms of

14



external momenta, it is simplest to eliminate it by multiplying this expression in numerator

and denominator by a factor 〈4 l〉 〈l123 l〉. After some simplification this yields,

d
[+,−]
1|2|3 (−,+) =

β+ [4 5]2 〈4 1〉
s123 [6 5]

〈l123 1〉 [1 l1] [2 l123]2 〈2 l1〉
〈4 l1〉 [4 l123] [l1 3]

, (45)

This is now in a form where we can use the loop momenta definitions given in Eq. (40) with

spinors identified by, for example, using the identity, lµ = 1
2
〈l|γµ|l]. We can thus make the

replacements:

〈l123 1〉 −→ −〈1|62(62+ 63)|1〉
〈1|6263|1〉 = −1 , [1 l1] −→ −s23

〈1|62|1]
〈1|6263|1〉 ,

[4 l123] −→ [4|(62+ 63)|1〉 = 〈1|2 + 3|4] , [2 l123] −→ [2|(62+ 63)|1〉 = [2 3] 〈3 1〉 ,

〈2 l1〉 −→ 〈2 1〉 , 〈4 l1〉 −→ 〈4 1〉 ,

[l1 3] −→ s23
〈1|62|3]
〈1|6263|1〉 = s23

β+ 〈1 2〉 [2 3]
〈1|6263|1〉 .

(46)

This results in the final expression,

d
[+,−]
1|2|3 (−,+) =

〈1 3〉2 [2 3] [4 5]2 〈1|62|1]
s123〈1|2 + 3|4] [5 6] . (47)

Adding in the contribution from the other helicity configuration (ha = −hb = −1), computed

in a similar fashion, yields the full result for this coefficient,

d1|2|3(−,+) =
s23〈1|62|1]
2s123

[

[2 3]

〈5 6〉 〈4|2 + 3|1]

(〈6|62|1]
β [1 3]

+
〈1 6〉 [1 2]

[2 3]

)2

− 〈1 3〉2 [4 5]2
〈2 3〉 [5 6] 〈1|2 + 3|4]

]

.

(48)

This is in agreement with the coefficient presented in Ref. [18] in the limit that the heavy

quark mass is taken to zero.

2. Calculation of d1|2|34

This coefficient is obtained from the cuts shown in Fig. 8, where the loop momentum is

subject to the conditions,

l2 = 0, (l − k1)
2 = 0, (l − k1 − p2)

2 = m2, l21234 = (l − k1 − p2 − p3 − k4)
2 = 0 . (49)

An explicit solution for l1 = l − k1 is given by,

lµ1 =
s234
2

〈1|62γµ|1〉
〈1|62(63+ 64)|1〉 , (50)
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FIG. 8: Diagram for the calculation of the coefficient of the scalar integral D0(k1, p2, p34; 0, 0,m, 0).

The massive quark is represented by the heavy (red) line and unitarity cuts are represented by a

dashed line.

which clearly satisfies the constraints in Eq. (49). From this we can also derive a useful form

for the momentum l1234,

lµ1234 = l1 − p2 − p3 − k4 = −1

2

〈1|62(62+ 63+ 64)γµ(62+ 63+ 64)|1〉
〈1|62(63+ 64)|1〉 . (51)

The other solution, corresponding to [l1| ∼ [1| can be obtained from Eq. (50) by complex

conjugation. We note that both of these parameterizations can be obtained from Eqs. (39)

and (40) by simply making the replacements, 63 → (63+ 64) and s23 → s234. From these forms

it is straightforward to compute the coefficients of this box.

3. Calculation of d1|23|4

The cuts used to isolate this coefficient are depicted in Fig. 9. This box with massless

internal lines and two opposite massive external lines is often referred to as the easy box [23].

The heavy quark does not participate in the loop, and the loop momentum is subject to the

following constraints,

l2 = 0, (l − k1)
2 = 0, (l − k1 − p2 − p3)

2 = 0, (l − k1 − p2 − p3 − k4)
2 = 0, (52)

The explicit solutions for l1 = l − k1 and l123 = l − k1 − p2 − p3 are given either by,

lµ1 =
1

2

〈4|(62+ 63)γµ|1〉
〈4 1〉 ,

lµ123 = −1

2

〈4|γµ(62+ 63)|1〉
〈4 1〉 , (53)
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FIG. 9: Diagram for the calculation of the coefficient of the scalar integral D0(k1, p23, k4; 0, 0, 0, 0).

The massive quark is represented by the heavy (red) line and unitarity cuts are represented by a

dashed line.

or by,

lµ1 =
1

2

[4|(62+ 63)γµ|1]
[4 1]

,

lµ123 = −1

2

[4|γµ(62+ 63)|1]
[4 1]

. (54)

Both of these clearly satisfy the constraints in Eq. (52).

As an example, we will calculate the coefficient of this box integral for the spin label

choice {−,+}. For this spin label choice it turns out that the box coefficient vanishes. The

argument is quite general and may be useful in explaining the absence of the easy box in

other contexts, e.g. ref. [24]. The result for the box coefficient is calculated from,

d1|23|4(−,+) =
∑

ha,hb

A3(1
−
q ,−l+q̄, l

ha

1 )× A4(l
−
q,−l+1234 q̄, 5

+
l̄
, 6−

l
)

×A3(l
−
1234 q, 4

+
q̄ ,−l

hb

123)× A4(−l−ha

1 , 2+
Q̄
, 3−

Q
, l−hb

123 ) , (55)

with the loop momenta fixed according to the constraints above, i.e. lµ is given by either

Eq. (53) or (54) above. From Eq. (B13) we see that A4(−l−ha

1 , 2+
Q̄
, 3−

Q
, l−hb

123 ) vanishes for

ha = hb. Therefore we need only consider the case ha = −hb. For definiteness let us consider

the case ha = 1, hb = −1. For this case we find that,

A3(1
−
q ,−l+q̄, l

+
1 ) =

[l l1]
2

[1 l] [l1 1]
=⇒ |l1〉 ∼ |1〉 ,

A3(l
−
1234 q, 4

+
q̄ ,−l

−
123) =

〈l1234 l123〉2
〈4 l123〉 〈4 l1234〉

=⇒ |l123] ∼ |4] . (56)
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Scalar integral Coefficient Scalar integral Coefficient

1. C0(p23, k4; 0, 0, 0) c23|4 6. C0(k1, p23, 0, 0, 0) c1|23

2. C0(p12, p3; 0,m, 0) c12|3 7. C0(p3, k4,m, 0, 0) c3|4

3. C0(p12, p34; 0,m, 0) c12|34 8. C0(k1, p2, 0, 0,m) c1|2

4. C0(p2, p3; 0,m, 0) c2|3 9. C0(k1, p234, 0, 0, 0) c1|234

5. C0(p2, p34; 0,m, 0) c2|34 10. C0(p123, k4, 0, 0, 0) c123|4

TABLE II: Scalar triangle integrals appearing in the leading colour amplitude Alc
6 (1, 2, 3, 4) and

the notation used in the text to denote their coefficients.

However we see that the conditions |l1〉 ∼ |1〉, |l123] ∼ |4] in Eq. (56) are not compatible with

the kinematic constraints, Eqs. (53,54) which require either,

|l1〉 ∼ |1〉 and |l123〉 ∼ |4〉 ,

or |l1] ∼ |1] and |l123] ∼ |4] , (57)

respectively. The argument follows identically for the contribution ha = −1, hb = +1.

Therefore for this external spin label choice {−,+} the box coefficient is zero. For the spin

label choice {−,−} there is a non-zero easy box coefficient because A4(−l−ha

1 , 2+
Q̄
, 3−

Q
, l−hb

123 )

no longer vanishes for ha = hb.

C. Calculation of triangle coefficients

The leading colour amplitude receives contributions from the ten triangle scalar integrals

listed in Table II. The coefficients of Triangles 1–4 are calculated directly as detailed in the

subsection below. Triangle 5 can be simply obtained by symmetry,

c2|34(h3, h2) = −flip
[

c12|3(−h2,−h3)
]

. (58)

The coefficients of the five remaining triangles are then uniquely determined by the known

divergence structure [22] of the amplitude, Eq. (36). The terms in Eq. (36) proportional to

log(−2k1.p2)/ǫ and log(−2k4.p3)/ǫ fix two of the triangle coefficients,

c1|2 = −
(

〈1|62|1]
(

−iAtree
6

)

+
d1|2|3
s23

+
d1|2|34
s234

)

,

c3|4 = −
(

〈4|63|4]
(

−iAtree
6

)

+
d2|3|4
s23

+
d12|3|4
s123

)

, (59)
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FIG. 10: Triangle diagram showing the momentum parameterization. All momenta are outgoing,

K1 +K2 +K3 = 0.

while the absence of single poles of the form log(s)/ǫ for s ∈ {s23, s1234, s123, s234} requires

the following relations,

c1|23 = 〈1|2 + 3|1]
(

d1|2|3
s23〈1|62|1]

+
d2|3|4

s23〈4|63|4]
− c23|4

〈4|2 + 3|4] −
2d1|23|4

〈1|2 + 3|4]〈4|2 + 3|1]

)

,

c1|234 = 〈1|2 + 3 + 4|1]
(

d1|2|3
s23〈1|62|1]

+
d1|2|34

s234〈1|62|1]
− c1|23

〈1|2 + 3|1]

)

, (60)

c123|4 = 〈4|1 + 2 + 3|4]
(

d12|3|4
s123〈4|63|4]

+
d1|2|34

s234〈1|62|1]
− c1|234

〈1|2 + 3 + 4|1] +
2d1|23|4

〈1|2 + 3|4]〈4|2 + 3|1]

)

.

These expressions are written in terms of already-calculated box and triangle coefficients,

the leading order amplitude, and the other triangle coefficients discussed below.

1. Forde method for triangle coefficients

We will calculate the coefficients of the triangle integrals using the method of Forde [13].

Triangles 2, 3 and 4 will require a slight extension of the formalism to include one of the

internal propagators with a mass. We first review the case of three massless internal mo-

menta, shown in Fig. 10 in order to introduce our notation which differs from that of Forde.

Defining l1 and l2 as follows,

lµ1 = lµ0 −Kµ
1 , lµ2 = lµ0 +Kµ

2 , (61)

the cut loop momenta (l2i = 0), i = 0, 1, 2 may be written in the following general form,

lµi = xiK
♭,µ
1 + yiK

♭,µ
2 +

t

2
〈K♭

1|γµ|K♭
2] +

xiyi
2t

〈K♭
2|γµ|K♭

1] . (62)
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All momenta can be expanded in terms of massless momenta, K♭
1 and K♭

2,

K1 = K♭
1 +

S1

γ
K♭

2 ,

K2 = K♭
2 +

S2

γ
K♭

1 ,

K3 = −(1 +
S2

γ
)K♭

1 − (1 +
S1

γ
)K♭

2 , (63)

where Si = K2
i and γ = 〈K♭

1|K♭
2|K♭

1] = 2K♭
2 ·K♭

1. The inverse relations are,

K♭,µ
1 =

Kµ
1 − (S1/γ)K

µ
2

1− (S1S2/γ2)
, K♭,µ

2 =
Kµ

2 − (S2/γ)K
µ
1

1− (S1S2/γ2)
. (64)

The dot product of K1 and K2 in Eq. (63) produces a quadratic equation for γ, the solutions

of which express γ in terms of the external momenta,

γ± = (K1 ·K2)±
√
∆, ∆ = (K1 ·K2)

2 − S1S2 . (65)

From Eq. (62) the massless vectors li can be expressed as a linear combination of the spinor

solutions for the vectors K♭
1 and K♭

2,

〈li| = t〈K♭
1|+ yi〈K♭

2| , [li| =
xi

t
[K♭

1|+ [K♭
2| . (66)

The on-shell conditions l2i = 0 for i = 0, 1, 2 allow us to derive the coefficients, xi and yi,

y0 =
S1 (γ + S2)

(γ2 − S1S2)
, x0 = − S2 (γ + S1)

(γ2 − S1S2)
,

y1 = y0 −
S1

γ
=

S1S2 (γ + S1)

γ(γ2 − S1S2)
, x1 = x0 − 1 = −γ(γ + S2)

γ2 − S1S2
,

y2 = y0 + 1 =
γ(γ + S1)

γ2 − S1S2

, x2 = x0 +
S2

γ
= −S1S2 (γ + S2)

γ(γ2 − S1S2)
. (67)

The spinor products can be expressed as follows,

[ll1] =
x1 − x0

t
[K♭

2K
♭
1] = −1

t
[K♭

2K
♭
1],

〈l l1〉 = t(y1 − y0)
〈

K♭
1K

♭
2

〉

= −tS1

γ

〈

K♭
1K

♭
2

〉

,

[ll2] =
x2 − x0

t
[K♭

2K
♭
1] =

S2

γt
[K♭

2K
♭
1],

〈l l2〉 = t(y2 − y0)
〈

K♭
1K

♭
2

〉

= t
〈

K♭
1K

♭
2

〉

,

[l1l2] =
x2 − x1

t
[K♭

2K
♭
1] =

1

t

(

1 +
S2

γ

)

[K♭
2K

♭
1],

〈l1 l2〉 = t(y2 − y1)
〈

K♭
1K

♭
2

〉

= t

(

1 +
S1

γ

)

〈

K♭
1K

♭
2

〉

. (68)
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FIG. 11: Diagrams for the calculation of the coefficients of the scalar integrals C0(p12, p3; 0,m, 0),

C0(p12, p34; 0,m, 0) and C0(p2, p3; 0,m, 0). The massive quark is represented by the heavy (red)

line. The momenta on the external lines are all outgoing.

Turning now to the case where the propagator with momentum l2 has a mass, we have

that l20 = l21 = 0 and l22 = m2. Since l2 is no longer massless it does not have an expansion

of the form Eq. (66). The results for the coefficients in the expansion defined in Eq. (66) for

l0 and l1 are,

y0 =
S1 (γ + S2 −m2)

(γ2 − S1S2)
, x0 =

γm2 − S2 (γ + S1)

(γ2 − S1S2)
,

y1 = y0 −
S1

γ
=

S1 (S2 (1 + (S1/γ))−m2)

γ2 − S1S2
, x1 = x0 − 1 =

γm2 − γ(S2 + γ)

γ2 − S1S2
. (69)

With these results in hand we can then compute the coefficients for triangles 2–4 with

the loop momentum assignments as shown in Figure 11 by making the replacements:

• Triangle 2: K1 = −p123, K2 = p3.

• Triangle 3: K1 = −p1234, K2 = p34.

• Triangle 4: K1 = −p23, K2 = p3.

For the case of triangles 2 and 4, we see that the coefficients are particularly simple since

S2 = m2.

We shall sketch the calculation of the coefficient of triangle 4 because it is the simplest.

We have S1 = p223 = s23 and S2 = p23 = m2 and hence see that,

γ± = K1 ·K2 ±
√

(K1 ·K2)2 − S1S2 = −β∓s23 . (70)
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Scalar integral Coefficient Scalar integral Coefficient

1. B0(p1234; 0, 0) b1234 4. B0(p12; 0,m) b12

2. B0(p23; 0, 0) b23 5. B0(p34; 0,m) b34

3. B0(p123; 0, 0) b123 6. B0(p234; 0, 0) b234

B0(p2; 0,m) b2 A0(m) a

TABLE III: Scalar bubble and tadpole integrals appearing in the leading colour amplitude

Alc
6 (1, 2, 3, 4) and the notation used in the text to denote their coefficients.

The lightlike momenta, Eq. (64), for the two solutions for γ reduce to,

K♭
1 = −k2 , K♭

2 = β+k3 , for γ = γ− = −β+s23, y0 = − 1

β
, x0 = −β−

β
,

K♭
1 = −k3 , K♭

2 = β−k2 , for γ = γ+ = −β−s23, y0 = +
1

β
, x0 = +

β+

β
. (71)

Using these assignments we find that the formulae for the coefficients of this triangle are

relatively compact. For example, for the {−,+} spin labels the result is,

c2|3(−,+) =
1

2s56

[{

[4 5]

s123

(

−β− 〈1 3〉2 〈6|(1 + 2)|3]
〈1 2〉 − β2

+ 〈1 2〉 [1 2]2 〈6|(1 + 2)|3]
β [1 3]2

+
β+β− 〈1 2〉 [1 2] 〈6|(1 + 3)|2]

β [1 3]
− β+β− 〈1 3〉 [1 2] 〈6|(1 + 2)|3]

β [1 3]

+
(β2 − β−β+β + 4β−β

2
+)

β
〈1 3〉 〈6|(1 + 3)|2]

)

+
β− 〈1 3〉 〈1 6〉 [4 5]

〈1 2〉

−β2
+ 〈2 3〉 〈4|(2 + 3)|5]〈6|(1 + 2)|3]

β 〈2 4〉2 [1 3]
+

β+〈3|(2 + 4)|5]〈6|(1 + 2)|3]
〈2 4〉 [1 3]

}

−
{

flip

}]

. (72)

D. Calculation of bubble and tadpole coefficients

The bubble integrals present in the leading colour amplitude are shown in Table III. The

coefficients of bubbles 1–4 are computed by using the method of spinor integration [11, 12,

20]. This is straightforward to apply for bubbles 1–3 but requires a small modification for

bubble 4 due to the effect of the massive propagator. The modified method is described

in the subsection below. Coefficients of the bubble integrals 5 and 6 are then obtained by

symmetry,

b34(h3, h2) = −flip [b12(−h2,−h3)] ,

b234(h3, h2) = −flip [b123(−h2,−h3)] , (73)
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All occurrences of B0(p3; 0, m) have been replaced by B0(p2; 0, m), so we only need to

determine the coefficient b2. A linear combination of the coefficient b2 and a is determined

from the known form of the single pole in ǫ, (i.e. the single pole with no associated logarithm

in the expansion of Eq. (36)),

b2 +m2a =
8

3
(−i)Atree

6 − b123 − b234 − b23 − b1234 − b12 − b34 . (74)

Eq. (74) is sufficient to fix the poles and the logarithms, but since,

A0(m)/m2 =
( µ2

m2

)ǫ(1

ǫ
+ 1
)

,

B0(p2; 0, m) =
( µ2

m2

)ǫ(1

ǫ
+ 2
)

, (75)

it leaves the constant term undetermined. In order to separately fix the coefficients a and

b2 we perform a direct Feynman diagram computation of the tadpole coefficient a to find,

a(−,+) = 0 ,

a(+,−) = 0 ,

m2a(−,−) =
1

2
(−i)Atree

6 (1−q , 2
−
Q̄
, 3−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) ,

m2a(+,+) =
1

2
(−i)Atree

6 (1−q , 2
+
Q̄
, 3+

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) . (76)

These results for a are valid in any covariant gauge.

1. Bubble integral with one massive propagator

To set up the formalism we consider the scalar bubble integral with one massive propaga-

tor, as shown in Fig. 12 (bubbles 4 and 5 are of this type). The evaluation of the coefficient

of this bubble integral starts from the identity,

∫

d4l δ(+)(l2)δ(+)((l − P )2 −m2) =

∫ ∞

0

tdt

∫

〈l dl〉 [l dl] δ(P 2 −m2 − t〈l|P |l]) , (77)

so that the formalism follows through as in the massless case, except that t is now frozen at

the value,

t =
P 2 −m2

〈l|P |l] . (78)
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FIG. 12: Diagram for the calculation of the coefficient of the scalar integral B0(P ; 0,m). The

massive quark is represented by the heavy (red) line. The momenta on the external lines are all

outgoing.

The discontinuity of the scalar integral is given by,

∆I2(P,m) =

∫

d4l δ(+)(l2)δ(+)((l − P )2 −m2)

=

∫ 〈l dl〉 [l dl]
〈l|P |l]

(

P 2 −m2

〈l|P |l]

)

= (P 2 −m2)

∫ 〈l dl〉 [η l]
〈l|P |η]〈l|P |l] . (79)

Using the standard formula [11, 20] we can express the integrand as a total derivative, and

perform one of the spinor integrations,

[l dl]

(

[η l]n

〈l|P |l]n+2

)

= [dl ∂l]

(

1

n+ 1

1

〈l|P |η]
[η l]n+1

〈l|P |l]n+1

)

. (80)

We obtain,

∆I2(P,m) = (P 2 −m2)

∫ 〈l dl〉 [η l]
〈l|P |η]〈l|P |l] , (81)

where η is an arbitrary massless momentum, We perform the final integral over 〈l dl〉 by

inspecting the residues of the pole in the integrand when 〈l| = [η|P to find,

∆I2(P,m) = −(P 2 −m2)
[η|P |η〉

P 2〈η|P |η] (82)

= −
(

P 2 −m2

P 2

)

. (83)

So, in contrast to the massless case, when applying the spinor integration approach an

additional rescaling factor of P 2/(P 2−m2) must be applied in order to obtain the coefficient

of the scalar bubble integral.
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FIG. 13: The box diagram contributing to the rational part in leading colour.

E. Calculation of the rational terms

The purely rational terms are calculated using a traditional Feynman diagram approach,

with tensor integrals handled using Passarino-Veltman reduction [25]. This might seem like

a retrograde step, ineluctably leading to the algebraic complexity that we have been trying

to avoid in this amplitude calculation. However two details of our particular case make it

quite simple.

First, in the calculation of the rational part we only need to consider diagrams that

violate the cut-constructibility condition [9]. This states that if n-point integrals (n > 2)

have at most n − 2 powers of the loop momentum in the numerator of the integrand, and

the two-point integrals have at most one power of the loop momentum, they will be cut-

constructible. For our particular calculation the pentagon diagrams are all cut-constructible,

and, in leading colour, there is only one box diagram, shown in Fig. 13, which is not cut-

constructible and hence gives a rational part. The calculation of the rational parts from

lower point diagrams, n = 3, 2 does not lead to great algebraic complexity. Second, the

rational terms are generated by terms in the Passarino-Veltman decomposition that involve

the metric tensor, gµν . Therefore any terms that are not proportional to gµν may be discarded

at an early stage of the computation.

The results for the rational terms turn out to be quite simple. For the {−,+} case we
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find,

Rlc(1−q , 2
+
Q̄
, 3−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) = −2

9
(−i)Atree

6 (1−q , 2
+
Q̄
, 3−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ )

+

{

〈1 6〉
2s56

[

〈1 3〉 [1 5] [1 2]
〈1|(2 + 3)|1]〈4|(2 + 3)|1] −

〈1 3〉 [1 5]
s23〈1|(2 + 3 + 4)|1]

( s234 [1 2]

〈4|(2 + 3)|1] + [2 4]
)

+
[2 4]

s234

( [2 5]

[2 3]
− 〈3 4〉 [4 5]

〈4|(2 + 3)|4]
)

]}

−
{

flip

}

, (84)

where the flip operation is defined in Eq. (27). The contribution for the opposite spin labels

on the heavy quark line is simply related to this one,

Rlc(1−q , 2
−
Q̄
, 3+

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) = Rlc(1−q , 3

+
Q̄
, 2−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) . (85)

For the {−,−} spin labels the result is,

Rlc(1−q , 2
−
Q̄
, 3−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) = −2

9
(−i)Atree

6 (1−q , 2
−
Q̄
, 3−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ )

+ N−−

({

〈1 6〉
2s56

[

[1 5]

〈1|2 + 3 + 4|1]s23

(s234(〈1|2|1]− 〈1|3|1])
〈4|2 + 3|1] − (〈1|2|4]− 〈1|3|4])

)

(86)

− (〈1|2|1]− 〈1|3|1])
〈1|2 + 3|1]

( [1 5]

〈4|2 + 3|1] +
[4 5]

s23

)

]}

+

{

flip

})

,

where the flip symmetry applies to all terms inside the curly brackets {. . .} but not the

prefactor N−−, defined in Eq. (14). The final combination of spin labels is obtained by

symmetry,

Rlc(1−q , 2
+
Q̄
, 3+

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ ) = −flip

(

Rlc(1−q , 2
−
Q̄
, 3−

Q
, 4+q̄ , 5

+

ℓ
, 6−ℓ )

)

, (87)

which we note is equivalent to replacing N−− by N++ in Eq. (86).

V. THE RESULTS FOR PRIMITIVE AMPLITUDE Asl
6

The subleading colour primitive amplitude is shown in Fig. 4. Fortunately with our choice

of massive spinors, Eq. (10), the entire result for all spin labels of the massive quark line

can be obtained from the one-loop results of Bern, Dixon and Kosower in Eqs. (12.10,12.11)

of ref. [18], after some replacements and manipulation. The calculation reported in ref. [18]

was for zero mass quarks and leptons with the following helicity assignments,

Asl
6 (1

+
Q
, 2−

Q̄
, 3+q , 4

−
q̄ , 5

−
l̄
, 6+

l
) . (88)
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According to Fig. 2 our standard labelling of the graphs (for one of the amplitudes whose

spin labelling corresponds to a non-zero amplitude in the massless case) is,

Asl
6 (1

−
q , 2

+
Q̄
, 3−

Q
, 4+q̄ , 5

+
l̄
, 6−

l
) . (89)

To establish the correspondence between our massive amplitudes and the massless ones

of ref. [18], we first consider the tree graphs. In our notation the tree amplitudes are given

by Eqs. (26,28). Note that we must perform the interchanges (1 ↔ 3), 〈〉 ↔ []), to compare

with Eq. (12.9) of ref. [18]. As a consequence of our Eq. (12) the massive {−,+} tree-

level amplitude, Eq. (26), calculated from diagrams of Fig. 2 and expressed in terms of the

massless vectors, ki, is identical to the massless result presented in Eq. (12.9) of ref. [18]

after performing the above interchange.

This same transformation, flipping the sign of all helicities and interchanging 1 and 3,

can be used at one-loop level to obtain the bulk of the results for the massive theory. This

is true for the upper two diagrams of Fig. 4, because the massive quark enters only in the

form of the heavy quark current see, Eqs. (12,13). The primitive amplitude shown in Fig. 4

can be split into divergent (V sl) and finite (F sl) pieces as follows

Asl
6 =

[

Atree
6 V sl + i F sl

]

, (90)

After performing the interchanges to reduce it to our notation, the singular part of the

one-loop amplitude as reported by Bern, Dixon and Kosower in ref. [18], Eq. (12.10) is,

V sl(1, 2, 3, 4) = V box(1, 2, 3, 4) + V vertex(1, 2, 3, 4) (91)

where the two contributions correspond to the upper and lower row of Fig. 4 in the massless

theory,

V box(1, 2, 3, 4) =

[

− 1

ǫ2

(

µ2

−s14

)ǫ

− 3

2ǫ

(

µ2

−s14

)ǫ

− 4

]

, (92)

V vertex(1, 2, 3, 4) =

[

− 1

ǫ2

(

µ2

−s23

)ǫ

− 3

2ǫ

(

µ2

−s23

)ǫ

− 7

2
,

]

(93)

where sij = 2ki · kj . V vertex in Eq. (93) is the complete correction to external vertex for a

massless line in the FDH scheme. For the massive case this must be replaced by the vertex

correction for a massive line, i.e. the result for the lower two diagrams of Fig. 4. The result
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is,

V vertex
+− = V vertex

−+ =
( µ2

m2

)ǫ( 1

2ǫ
− 1

2β

(

1 + β2
)

[ ln x

ǫ
+G(x)

]

− 3

2
β ln x+

1

2

)

, (94)

V vertex
++ = V vertex

−− = V vertex
−+ +

1

2
β ln x , (95)

where β and β± are given in Eq. (7), x = −β−/β+, and,

G(x) = −2 Li2(−x)− 2 lnx ln(1 + x) +
1

2
ln2(x)− π2

6
, Li2(x) = −

∫ x

0

dz

z
ln(1− z) . (96)

The self energy corrections on the external massive lines will be accounted for separately in

association with the wave function renormalization. This concludes our description of the

divergent parts and the lower two graphs of Fig. 4.

We now turn to the finite parts of the massive primitive amplitudes shown in the upper

part of Fig. 4. Because of Eq. (12), the results for the {+,−} and {−,+} amplitudes from

the upper row of Fig. 4 in the massive theory, expressed in terms of the lightlike momenta

ki, are given by the results in the massless theory.

The only remaining issue is whether we can also obtain the massive {−,−} and {+,+}
amplitudes from the massless results. Note that in ref. [18] the finite parts of the massless

amplitudes are written in terms of certain symmetry operations in order to make the am-

plitudes more compact. As a first step we write out the amplitudes explicitly. With this

result in hand we want to address the issue of whether the results obtained with an external

fermionic current, Eq. (12) (i.e. the massless one-loop amplitude), can be used to obtain the

results with the fermionic currents of Eq. (13). Thus expressed in our notation, the massless

amplitude for helicity choice (2+
Q̄
, 3−

Q
) must contain one 〈3| and one |2]. All other dependence

on k2 or k3 can only enter in the combination k2+k3 which can be eliminated by momentum

conservation. After the amplitude has been recast in this form, we can obtain the required

result by replacing the current of Eq. (12) with the current of Eq. (13).

An example may help to clarify the procedure. We shall consider a particular box which

contributes to the one-loop amplitude,

Asl
6 (1

−
q , 2

h2

Q̄
, 3h3

Q , 4+q̄ , 5
+

ℓ
, 6−ℓ ) = d4|1|23(h3, h2) D0(k4, k1, p23; 0, 0, 0, 0) + . . . (97)

The result for this box coefficient in the massless helicity-conserving amplitude, (adapted

from the first line of Eq. (12.11) of ref. [18]) is,

d4|1|23(−,+) = s14

(

〈1 3〉2[4 5]2
〈3 2〉 [5 6] [4|(2 + 3)|1〉 −

[1|(2 + 3)|6〉2[2|(1 + 3)|4〉2

[3 2] 〈5 6〉 [1|(2 + 3)|4〉3

)

. (98)
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FIG. 14: Fermion loop contribution to the gluon vacuum polarization.

This can be rewritten in a form which makes the |3〉, |2] and k2 + k3 structure manifest,

d4|1|23(−,+) = −s14

×
(

〈1 3〉 〈1|(2 + 3)|2][4 5]2
s23 [5 6] [4|(2 + 3)|1〉 − [1|(2 + 3)|6〉2〈3|(2 + 3)(1 + 2 + 3)|4〉[2|(1 + 2 + 3)|4〉

s23 〈5 6〉 [1|(2 + 3)|4〉3

)

.

(99)

Replacing the {−,+}-current, Eq. (16), with the {−,−}-current, Eq. (17), we obtain the

result for the coefficient of this box in the massive amplitude labelled {−,−}

d4|1|23(−,−) = −N−− s14

×
(

〈1 2〉 〈1 3〉 [4 5]2
〈3 2〉 [5 6] [4|(2 + 3)|1〉 +

[1|(2 + 3)|6〉2[2|(1 + 3)|4〉[3|(1 + 2)|4〉
[3 2] 〈5 6〉 [1|(2 + 3)|4〉3

)

. (100)

Carrying out this operation for all the terms in Eq. (12.11) of ref. [18] we obtain the complete

massive amplitude for the {−,−} and {+,+} spin labellings.

VI. RESULTS FOR THE PRIMITIVE AMPLITUDES Alf
6 AND Ahf

6 .

The unrenormalized contribution of the fermion loop diagram, shown in Fig. 14, for a

quark of mass m is,

Πµν = ig2cΓ

[

gµνp2 − pµpν
]

Π(p2, m2) , (101)

where (not including the minus sign for a fermion loop),

Π(p2, m2) = 2TR
1

ǫ

( µ2

m2

)ǫ
∫ 1

0

dx
4x(1− x)

[

1− x(1− x) p2

m2

]ǫ , (102)

and TR = 1
2
. For nlf quarks which can be considered massless this becomes,

Π(p2, 0) = nlf

[2

3

1

ǫ

( µ2

−p2

)ǫ

+
10

9

]

+O(ǫ) . (103)
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Thus in our notation, (c.f. Eq. (31)) the result for the unrenormalized fermion-loop primitive

is,

Alf
6 (1

+
q , 2

±
Q̄
, 3∓

Q
, 4q̄; 5

+

ℓ
, 6−ℓ ) = Atree

6 (1+q , 2
±
Q̄
, 3∓

Q
, 4q̄; 5

+

ℓ
, 6−ℓ )

[

2

3

1

ǫ

(

µ2

−s23

)ǫ

+
10

9

]

, (104)

where Atree
6 are given in Eqs.(26, 28).

VII. RENORMALIZATION

The amplitudes presented so far are bare amplitudes, which require ultraviolet renormal-

ization. The renormalization scheme is slightly more complicated in the presence of massive

particles [29] so we specify it in detail here. The requirements for our renormalization scheme

are,

• The decoupling of heavy quarks should be manifest.

• The evolution equations for the running coupling and for the parton distribution func-

tions should be the same as the equations in the theory without the heavy quark.

Both the strong coupling and the parton distribution functions should run with the

coefficients appropriate for the MS scheme in the absence of the massive particles.

• The mass parameter should correspond to a pole mass.

These three requirements completely specify the renormalization scheme. If the diagram

in question contains no heavy internal loops of heavy particles we use the MS scheme. If

on the other hand the diagram contains heavy loops we will perform subtraction at zero

momentum, p = 0. The resultant renormalized Green’s function will be a function of p2/m2

and hence exhibit decoupling as the mass of the heavy quarks becomes large.

The full renormalized amplitude, AR
6;1 is obtained by adding an overall counterterm,

NcA
R
6;1 = NcA6;1

+ g2cΓ

{

− 2
(11

6
Nc −

nlf

3

)1

ǫ
+

2nhf

3

(1

ǫ
+ ln

µ2

m2

)

+
Nc

3
− CF

(3

ǫ
+ 3 ln

µ2

m2
+ 5
)}

Atree
6 .

(105)

We will now justify the contributions in the counterterm term by term. The first term in

Eq. (105) is the normal MS renormalization of the coupling constant, which includes the
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renormalization of the nlf loops of massless fermions. The second term in Eq. (105) deals

with the case where we have nhf heavy fermions. Renormalizing Eq. (102) at p2 = 0 to

ensure decoupling of the heavy fermions as m becomes large, we obtain for each of the nhf

heavy fermions,

ΠR(p2, m2) = −4

∫ 1

0

dx x(1 − x) ln
(

1− x(1− x)
p2

m2

)

. (106)

In the high mass limit ΠR simplifies to,

ΠR(s,m2) → 2

15

s

m2
+O(

s2

m4
) . (107)

Thus after renormalization the contribution of the heavy quark is given by (c.f. Eq. (31))

Ahf
6 (1+q , 2

±
Q̄
, 3∓

Q
, 4q̄; 5

+

ℓ
, 6−ℓ ) = Atree

6 (1+q , 2
±
Q̄
, 3∓

Q
, 4q̄; 5

+

ℓ
, 6−ℓ )Π

R(s23, m
2) . (108)

We must also perform a finite renormalization of the gauge coupling [27] to translate from

the FDH coupling to the normal MS coupling,

αFDH
s = αMS

s

(

1 +
Nc

6

αMS
s

2π

)

. (109)

This explains the third term in Eq. (105). The last term in Eq. (105) represents the wave

function renormalization for the two external massive fermions, calculated in Appendix D.

In the FDH scheme we have from Eq. (D10),

ZQ = 1− g2cΓCF

[

3

ǫ
+ 3 ln

(

µ2

m2

)

+ 5

]

+O(g4, ǫ) , (110)

independent of the gauge-fixing parameter in any covariant gauge.

Since our calculation is performed in the four-dimensional helicity scheme there is a

further finite renormalization [27] required to arrive at the ’t Hooft-Veltman scheme. We

shall work consistently in the FDH scheme, so this will not be required.

VIII. IMPLEMENTATION INTO MCFM

The one-loop matrix elements, computed using the methods described above, have been

included in a full next-to-leading order calculation of the WQQ̄ process. The amplitude for

the lowest order process is given in Eqs. (26,28). In order to complete the NLO calculation
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FIG. 15: Feynman graphs appearing in the calculation of the real radiation amplitudes.

the Born level amplitude and the one-loop amplitude must be supplemented with results

for the real radiation diagrams and a method for cancelling infrared singularities between

the two contributions. The tree-level real radiation process has been computed using the

diagrams shown in Fig. 15, adopting the same choice of massive spinors as used in the

virtual contribution. Infrared singularities are handled using the subtraction method [32]

implemented using the dipole formulation [33] and extended to the case of massive emitters

and spectators [34]. The full calculation will be made available as part of the the MCFM

code [30, 31].

To provide a point of comparison we have timed the evaluation of the complete one-loop

contribution, i.e. the interference in Eq. (25), summed over all four possible spin labels on

the heavy quark line. Using a standard 2.66 GHz machine and compiling the code with

the -O2 flag of gfortran this operation takes 4ms for a single phase space point, which

is about a factor of sixty slower than evaluating the corresponding massless amplitudes as

implemented in MCFM.
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mW = 80.44 GeV mb = 4.62 GeV

mt = 172.6 GeV sin2 θw = 0.223

GF = 1.16639 · 10−5 GeV−2 α =
√
2
π GFm

2
W sin2 θw

Vud = Vcs = 0.974 GeV Vus = Vcd = 0.227

PDF set: CTEQ6L1

αs(mW + 2mb) = 0.130345

}

LO
PDF set: CTEQ6M

αs(mW + 2mb) = 0.118298

}

NLO

TABLE IV: Inputs used for the results presented in section VIII.

A. Checks on the calculation

A number of checks have been performed at various stages of the calculation.

1. At the level of the one-loop amplitude, we have cross-checked our calculation with

a numerical implementation of generalized d-dimensional unitarity [35]. This check

confirms the coefficients of all the scalar integrals and rational terms, as well as the

complete (unrenormalized) amplitude, at any given phase space point. The values of

the unrenormalized one-loop amplitudes at a specific phase space point are given in

Appendix E. These numbers may be useful in performing a check of our calculation.

2. The cancellation of infrared singularities is performed using a slight extension of the

original dipole formulation in which the extent of each subtraction region is controlled

by an additional parameter [36, 37]. This parameter also appears in the integrated

form of the dipole counterterms in such a way that the sum of real and virtual radiation

does not depend upon its value. We have checked that this independence is indeed

manifest in our calculation.

3. We have checked that our final results for the Wbb̄ integrated cross section agree with

the values reported in the earlier calculations of Refs. [2–4].

B. Phenomenology

For now we present only a limited set of results, focussing mainly on the comparison with

previous calculations and presenting a simple distribution involving the decay products of

the W boson. We leave a detailed phenomenological study for a future work.
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√
s 7 TeV 8 TeV 14 TeV

W+bb̄
LO 4.456(2) 5.157(2) 9.041(3)

NLO 8.655(9) 10.58(2) 23.51(3)

W−bb̄
LO 2.588(2) 3.109(1) 6.256(2)

NLO 5.053(5) 6.353(6) 15.55(2)

TABLE V: LO and NLO cross sections (in picobarns) for Wbb̄ production at various energies of

the LHC. Integration errors are shown in parentheses.

For convenience, we choose the same set of input parameters here as reported in Ref. [3],

which are summarized in Table IV. The final state is defined by the following cuts on the

b-jets,

pbT > 25 GeV , |ηb| < 2.5 , (111)

where the jets are identified using the kT clustering algorithm with pseudo-cone size R = 0.7.

The results presented here are inclusive of the additional jet that may be present at NLO.

As already discussed previously, although we treat the b-quark as a massive particle when

it appears in the final state, we use nlf = 5 light flavours in the running of αs and the PDF

evolution. This is primarily for comparison with previous work [3]. We note that because of

the smallness of Vcb and Vub the b-quark distributions in the initial state make a negligible

contribution. However because s23 > 4m2
b it is more appropriate to have a strong coupling

constant running with nlf = 5 active flavours.

We first present the cross sections for this process at the LHC, for center-of-mass energies
√
s = 7, 8 and 14 TeV. The results at LO and NLO are shown in Table V where we have

used a scale choice µR = µF = mW + 2mb throughout, again to facilitate comparison with

Ref. [3]. For these results no cuts are applied on the decay products of the W boson and

the corresponding branching ratio is removed, so that the reported cross sections are for a

W that does not decay. In this way, one sees from the final column (
√
s = 14 TeV) that

our results agree with those reported in Ref. [3] at the level of 0.5%. As noted in earlier

work [38], at LHC energies the NLO corrections are substantial because of the influence of

the quark-gluon initial state.

To illustrate a new quantity that may now be computed at NLO accuracy, in Fig. 16 we

show the LO and NLO predictions for the quantity Rmin
lj which is defined as the separation
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FIG. 16: Distribution of the minimum separation between the electron and any jet, Rlj, defined in

Eq. (112) of the text, for W−bb̄ production at the 14 TeV LHC. The distributions are normalized

to unit area.

between the charged lepton and the closest jet,

Rmin
lj = min

{jets}

√

(ηlepton − ηjet)2 + (φlepton − φjet)2 . (112)

In this equation the azimuthal angles and pseudorapidities (in the lab-frame) of the lepton

and jets are denoted by φ and η respectively. We see that the effect of the NLO corrections

on the shape of this distribution is relatively minor, visible only for Rmin
jl > 1.5.

IX. CONCLUSIONS

We have presented the first computation of the Wbb̄ cross section with massive b-quarks,

including the lepton correlations present in the decay of the W -boson. This calculation

required knowledge of the one-loop virtual corrections to the qQ̄Qq̄ℓℓ process retaining the

mass for the heavy quarks Q. The one-loop amplitude was obtained using the spinor helicity

formalism. This method has been extensively used for one-loop calculations with massless

quarks, but rarely with massive quarks. The calculation required a number of modifications

of standard techniques to cope with the presence of the mass.
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Although our results are analytic we have not yet simplified them sufficiently to publish

them in a journal article. Our results for the one-loop amplitudes will be included in the

released version of MCFM, which is an appropriate method of publishing such results. Our

analytic results did lead to a code which is fast and numerically stable. Using this code we

intend to study the detailed phenomenology of this process in a future publication.
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Appendix A: Notation for spinor products

The spinor notation is almost standard, but because of the presence of massive particles,

it is important to make it explicit. We adopt the following notation for massless spinors,

|i〉 = |i+〉 = u+(ki), |i] = |i−〉 = u−(ki) ,

〈i| = 〈i− | = ū−(ki), [i| = 〈i+ | = ū+(ki) . (A1)

Further the spinor products are defined as,

〈i j〉 = 〈i− |j+〉 = ū−(ki)u+(kj) ,

[i j] = 〈i+ |j−〉 = ū+(ki)u−(kj) , (A2)

with ki, kj massless particles. With our convention,

〈i j〉 [j i] = 2ki · kj = sij . (A3)

We also define the spinor strings.

〈i|j|k] ≡ 〈ki − |6kj|kk−〉 ,

〈i|j + k|l] ≡ 〈ki − |(6kj + 6kk)|kl−〉 ,

〈i|jk|l〉 ≡ 〈ki − |6kj 6kk|kl+〉 . (A4)
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FIG. 17: Diagrams for two gluons coupling to a massive quark line.

For the case of a massless momentum kj we may write,

〈i|j|k] = 〈i j〉 [j k] , (A5)

but for the case of a massive momentum, (in our notation the momenta p2 and p3), this

separation in no longer possible. As a compact notation we therefore write in this case

〈i|6j|k], denoting the massive momentum by a bold-face symbol.

The Schouten identity,

[i k][mn] = [i n][mk] + [im][k n] , (A6)

may be applied to these compound quantities. Thus we have,

〈i|6j|k][mn] = 〈i|6j|n][mk] + 〈i|6j|m][k n] . (A7)

Appendix B: Tree level results

1. Results for A(1g, 2Q̄, 3Q, 4g)

As an example of the use of the massive spinors employed in the calculation we consider

the tree-level two-quark two-gluon amplitude, A(1g, 2Q̄, 3Q, 4g). The fermions, with momenta

p2 and p3 have a common massm. The momenta are all outgoing so that k1+p2+p3+k4 = 0.

The amplitude is obtained by summing the contributions of the three Feynman diagrams,

M (a), M (b) and M (c) shown in Fig. 17,

Atree
4 = − i

2
g2

[

(TC4TC1)i3i2(M
(a) +M (b)) + (TC1TC4)i3i2(M

(c) −M (b))

]

, (B1)

Normalizing the colour matrices as follows,

Tr TATB = δAB , (B2)
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an explicit calculation yields the following contributions,

M (a) = ū(p3)6ǫ4
6p34 +m

p234 −m2
6ǫ1v(p2) , (B3)

M (b) =
ǫ1 · ǫ4
k1 · k4

ū(p3)6k1v(p2)−
k1 · ǫ4
k1 · k4

ū(p3)6ǫ1v(p2) +
k4 · ǫ1
k1 · k4

ū(p3)6ǫ4v(p2) , (B4)

M (c) = ū(p3)6ǫ1
6p13 +m

p213 −m2
6ǫ4v(p2) , (B5)

where p13 = k1 + p3 and p34 = p3 + k4. From Eq. (10) we write the massive spinors as,

ū(p3) = N3ū(k2)(6p3 +m) , (B6)

v(p2) = N2(6p2 −m)v(k3) , (B7)

and then reorganize the calculation by using the identities [39],

(6p3 +m)6ǫ4 ≡ (6p34 − 6k4 +m)6ǫ4
≡ (2p34 − k4) · ǫ4 −

1

2
[6k4, 6ǫ4]− 6ǫ4(6p34 −m) , (B8)

(−6p12 +m)6ǫ1 ≡ −(2p2 + k1) · ǫ1 −
1

2
[6k1, 6ǫ1] + 6ǫ1(6p2 +m) . (B9)

Inserting these identities we may write new forms for M (a) and M (c),

M (i) = N2N3ū(k2) Γ
(i) (6p2 −m) v(k3) , i = (a, b, c) (B10)

Γ(a) =
{[

2p3 · ǫ4 −
1

2
[6k4, 6ǫ4]

] 1

2p3 · k4

[

− 2p2 · ǫ1 −
1

2
[6k1, 6ǫ1]

]

− 6ǫ46ǫ1
}

, (B11)

Γ(c) =
{[

2p3 · ǫ1 −
1

2
[6k1, 6ǫ1]

] 1

2p3 · k1

[

− 2p2 · ǫ4 −
1

2
[6k4, 6ǫ4]

]

− 6ǫ16ǫ4
}

. (B12)

These formulae have the advantage that the m dependence is corralled in a single place,

in Eq. (B10). Moreover the overall form is simple and the last term in Eqs. (B11, B12)

does not contain the massive propagator. Γ(b) can be read off from Eq. (B4). Inserting the
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appropriate polarization vectors we find,

−iA(1−g , 2
+
Q̄
, 3−

Q
, 4+g ) = − [2 4]2 〈1|62|4]

[1 4] [2 3] 〈4|63|4] ,

−iA(1−g , 2
−
Q̄
, 3+

Q
, 4+g ) = − 〈1 2〉2〈1|63|4]

〈1 4〉 〈2 3〉 〈4|63|4] ,

−iA(1−g , 2
−
Q̄
, 3−

Q
, 4+g ) = 2(β+ − β−)

m

[2 3]

〈1 3〉2[3 4]2
〈1 4〉 [1 4] 〈4|63|4] ,

−iA(1−g , 2
+
Q̄
, 3+

Q
, 4+g ) = 2(β+ − β−)

m

〈2 3〉
〈1 3〉2[3 4]2

〈1 4〉 [1 4] 〈4|63|4] ,

−iA(1−g , 2
+
Q̄
, 3−

Q
, 4−g ) = 0 ,

−iA(1−g , 2
−
Q̄
, 3+

Q
, 4−g ) = 0 ,

−iA(1−g , 2
+
Q̄
, 3+

Q
, 4−g ) = −mβ+

〈2 3〉
〈1 4〉2
〈4|63|4] ,

−iA(1−g , 2
−
Q̄
, 3−

Q
, 4−g ) =

mβ−
[2 3]

〈1 4〉2
〈4|63|4] . (B13)

2. Results for A(1q, 2q̄, 3g)

The tree-level results for the simple qq̄g amplitudes, stripped of overall colour and coupling

constant factors, are well known:

−iA(1−q , 2
+
q̄ , 3

−
g ) = −〈1 3〉2

〈1 2〉 , (B14)

−iA(1−q , 2
+
q̄ , 3

+
g ) = − [2 3]2

[1 2]
. (B15)

3. Results for A(1q, 2q̄, 3g, 4l̄, 5l)

The tree-level amplitudes for qq̄Wg are also rather simple. Removing the colour and

coupling constants as normal we have,

−iA(1−q , 2
+
q̄ , 3

−
g , 4

+
l̄
, 5−

l
) = − [2 4]2

[1 3] [2 3] [4 5]
,

−iA(1−q , 2
+
q̄ , 3

+
g , 5

+
l̄
, 4−

l
) =

〈1 5〉2
〈1 3〉 〈2 3〉 〈4 5〉 . (B16)
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Appendix C: Scalar integrals

We work in the Bjorken-Drell metric so that l2 = l20 − l21 − l22 − l23. The definition of the

integrals is as follows,

A0(m
2
1) =

µ4−D

iπ
D

2 rΓ

∫

dDl
1

(l2 −m2
1)

,

B0(p1;m1, m2) =
µ4−D

iπ
D

2 rΓ

∫

dDl
1

(l2 −m2
1)((l + p1)2 −m2

2)
,

C0(p1, p2;m1, m2, m3) =
µ4−D

iπ
D

2 rΓ
(C1)

×
∫

dDl
1

(l2 −m2
1)((l + p1)2 −m2

2)((l + p1 + p2)2 −m2
3)

,

D0(p1, p2, p3;m1, m2, m3, m4) =
µ4−D

iπ
D

2 rΓ

×
∫

dDl
1

(l2 −m2
1)((l + p1)2 −m2

2)((l + p1 + p2)2 −m2
3)((l + p1 + p2 + p3)2 −m2

4)
.

We have removed the overall constant which occurs in D-dimensional integrals

rΓ ≡ Γ2(1− ǫ)Γ(1 + ǫ)

Γ(1− 2ǫ)
=

1

Γ(1− ǫ)
+O(ǫ3) = 1− ǫγ + ǫ2

[γ2

2
− π2

12

]

+O(ǫ3) . (C2)

Appendix D: Fermionic self energy

Introducing the renormalization of the bare parameters, m0 = Zmm and Q0 =
√

ZQQ

we may write the renormalized inverse propagator for a heavy quark of momentum p as,

−iΓR(p,m; g) = ZQ

[

6p−m− Σ(p,m; g)−m(Zm − 1)
]

+O(g4) . (D1)

−iΣ(p,m; g) is the contribution of the one-loop heavy quark self-energy graph, which prior

to renormalization has the form,

Σ(p,m; g) = −g2CF cΓ

[

X(p2) (6p−m) +mY (p2)
]

. (D2)

By direct calculation of the Feynman diagram in an arbitrary covariant gauge specified by

gauge fixing parameter λ,

X(p2) =

[

2(1− δǫ)(B0(p; 0, m) +B1(p; 0, m))− (1− λ)(B0(p; 0, m) + (p2 −m2)B′
0(p; 0, m))

]

Y (p2) =

[

2B1(p, 0, m)(1− δǫ)− 2B0(p; 0, m)− (1− λ)(p2 −m2)B′
0(p; 0, m))

]

(D3)

40



where δ = 0 in the FDH scheme, δ = 1 in the conventional dimensional regularization

scheme, and CF = N2
c−1
2Nc

. The integrals B0 and B1 are defined as,

{B0(p; 0, m), B1(p; 0, m)pµ} =
µ4−D

iπ
D

2 rΓ

∫

dDl
{1, lµ}

l2 ((l + p)2 −m2)
, (D4)

and B′
i is the derivative of the form factor Bi with respect to p2.

Taking the limit p2 = m2 before the limit ǫ → 0, we have the following results,

B0(p; 0, m)|p2=m2 =
( µ2

m2

)[1

ǫ
+ 2
]

,

B1(p; 0, m)|p2=m2 =
( µ2

m2

)[

− 1

2ǫ
− 1

2

]

,

B′
0(p; 0, m)|p2=m2 = − 1

2m2

( µ2

m2

)[1

ǫ
+ 2
]

,

B′
1(p; 0, m)|p2=m2 = − 1

2m2
. (D5)

The mass renormalization is fixed by the condition that the inverse propagator vanish on

shell,

Zm = 1 + g2CFY (m2) = 1− cΓg
2CF

[

3

ǫ
+ 3 ln

(

µ2

m2

)

+ 5− δ

]

+O(g4, ǫ) . (D6)

After mass renormalization the result for the inverse propagator becomes,

−iΓR(p,m; g) = ZQ

[

(6p−m)(1 + g2CF cΓX(p2)) +mCF cΓ
(

Y (p2)− Y (m2)
)

]

. (D7)

Renormalizing the wave function at the point p2 = m2 we find,

ZQ = 1− g2CF cΓ

[

X(m2) + 2m2dY (p2)

dp2

∣

∣

∣

p2=m2

]

+O(g4) . (D8)

By explicit calculation we have that,

X(m2) =

[

1

ǫ
+ ln

(

µ2

m2

)

+ (3− δ)− (1− λ)

(

1

ǫ
+ ln

(

µ2

m2

)

+ 2

)

+O(ǫ)

]

,

2m2dY (p2)

dp2

∣

∣

∣

∣

∣

p2=m2

=

[

2

ǫ
+ 2 ln

(

µ2

m2

)

+ 2 + (1− λ)

(

1

ǫ
+ ln

(

µ2

m2

)

+ 2

)

+O(ǫ)

]

. (D9)

The final result for the wave function renormalization is independent of the gauge fixing

parameter, λ,

ZQ = 1− g2cΓCF

[

3

ǫ
+ 3 ln

(

µ2

m2

)

+ 5− δ

]

+O(g4, ǫ) . (D10)

The agreement between Eq. (D6) and Eq. (D10) is fortuitous because the former contains

only ultraviolet poles, whereas the latter contains both ultraviolet and infrared poles.
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Appendix E: Numerical evaluation

For the convenience of the reader we present numerical results for the amplitudes at a

particular phase space point. The results we present contain no ultraviolet renormalization

and the self energy corrections on the two massive external legs have not been included.

(The self energy corrections on the massless external legs vanish).

The phase space point is specified by six momenta satisfying overall momentum conser-

vation k1 + p2 + p3 + k4 + k5 + k6 = 0 and k2
i = 0, p22 = p23 = m2. The massive momenta

p2 and p3 are defined in Eqs. (6,7). For the numerical results the massless momenta ki are

taken to be,

k1 =
µ

2
(−1,+ sin θ,+cos θ sinφ,+cos θ cosφ),

k2 =
µ

3
(1, 1, 0, 0),

k3 =
µ

7
(1, cosσ, sin σ, 0),

k4 =
µ

2
(−1,− sin θ,− cos θ sinφ,− cos θ cosφ),

k5 =
µ

6
(1, cos ρ cosσ, cos ρ sin σ, sin ρ),

k6 = −k1 − k2 − k3 − k4 − k5 , (E1)

where θ = π/4, φ = π/6, ρ = π/3, cosσ = −7/19, m = 1 GeV and µ = 6 GeV. Note that the

energies of k1 and k4 are negative and k2
i = 0. As usual µ also denotes the scale which is

used to carry the dimensionality of the D-dimensional integrals. With m = 1 GeV we have

β ∼ 0.38397382 . . . so that β differs substantially from the massless limit, β = 1.

The results for the primitive amplitudes are presented in Tables VI and VII, where we have

divided the 1-loop amplitudes by their tree-level counterparts in order to remove the overall

ambiguity in the phase [40]. The individual amplitudes labelled by the particular spin labels

are dependent on our choice of the spinor wave functions, Eq. (10). Results independent

of this convention may be obtained by summing the squares of the four amplitudes. The

results in Tables VI and VII have been checked by an independent program.
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